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ABSTRACT

Offline Reinforcement learning (RL) is a compelling framework for learning op-
timal policies without additional environmental interaction. Nevertheless, offline
RL inevitably faces the problem of distributional shifts, where the states and ac-
tions encountered during policy execution are not in the training dataset. A com-
mon solution involves incorporating conservatism into either the policy or value
function, which serves as a safeguard against uncertainties and unknowns. In this
paper, we also focus on achieving the same objectives of conservatism but from a
different perspective. We propose COmpositional COnservatism with Anchor-
seeking (COCOA) for offline RL, an approach that pursues conservatism in a
compositional manner on top of the transductive reparameterization (Netanyahu
et al., 2023). In this reparameterization, the input variable (the state in our case)
is viewed as the combination of an anchor and its difference from the original in-
put. Independently of and agnostically to the prevalent behavioral conservatism
in offline RL, COCOA learns to seek both in-distribution anchors and differences
with the learned dynamics model, encouraging conservatism in the compositional
input space for the function approximators of the Q-function or the policy. Our
experimental results show that our method generally improves the performance of
four state-of-the-art offline RL algorithms on the D4RL benchmark.

1 INTRODUCTION

Reinforcement learning (RL) (Sutton & Barto, 2018) has achieved notable successes across vari-
ous domains, from guiding robotic movements (Dasari et al., 2020) and optimizing game strategies
(Mnih et al., 2015) to recently promising training of language models (Rajpurkar et al., 2016). De-
spite these achievements, the challenges posed by real-time interaction in complex and sensitive
environments have prompted the development of offline RL as a viable direction. Offline RL (Wier-
ing & Van Otterlo, 2012; Levine et al., 2020), or batch RL (Lange et al., 2012), involves learning
policies solely from pre-existing data, without any direct interaction with the environment. Offline
RL is becoming increasingly popular in real-world applications such as autonomous driving (Yu
et al., 2020a) or healthcare (Gottesman et al., 2019) where prior data are abundant.

By its nature of learning from prior datasets, offline RL is often susceptible to distributional shifts.
This issue arises when the distribution of states and actions encountered during policy execution is
different from the training dataset, a situation particularly challenging in machine learning (Levine
et al., 2020). Numerous existing offline RL algorithms tackle this challenge by reducing distribu-
tional shifts through conservative approaches, including constraining the policy or estimating un-
certainty to measure distributional deviations (Kim & Oh, 2023; Ran et al., 2023; Kostrikov et al.,
2022; Kumar et al., 2020; Wu et al., 2019; Kumar et al., 2019; Fujimoto et al., 2019; Sun et al., 2023;
Rigter et al., 2022; Wang et al., 2021; Yu et al., 2021; 2020b; Kidambi et al., 2020). These strategies
aim to keep the agent within known distributions, mitigating risks of unexpected behaviors. In this
paper, we also pursue the same goals of conservatism, focusing on aligning the test data distribution
with the seen distribution, but from a different perspective.

We begin by recognizing that the state distributional shift problem is closely related to addressing
how to deal with the out-of-support input points of the function approximators. We explore the pos-
sibility of transforming the out-of-support learning problem into an out-of-combination problem by
injecting inductive biases into function approximators of the policy or the Q-value function. Such
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a transformation has been previously proposed by Netanyahu et al. (2023), where a transductive
approach named bilinear transduction makes predictions through a bilinear architecture after repa-
rameterizing the target function. This reparameterization decomposes the input variable into two
components, namely an anchor and a delta, where the anchor is another variable in the input space
and the delta is the difference between the input variable and the anchor. If the reparameterized
training and test data distribution satisfy certain assumptions, and if the target function has certain
properties, the bilinear transduction can address the out-of-combination problem, which potentially
resolves the out-of-support problem with the original target function.

In this work, we propose COmpositional COnservatism with Anchor-seeking (COCOA) for offline
RL, a framework that adopts a compositional approach to conservatism, building upon the transduc-
tive reparameterization (Netanyahu et al., 2023). Our approach, following (Netanyahu et al., 2023),
transforms the distributional shift problem into an out-of-combination problem. This shifts the key
factors for generalizability from the data to the decomposed components and the interrelations be-
tween them, demanding that the anchor and delta should be selected close to the training dataset
distribution. Otherwise, if the anchor is selected arbitrarily, it can lead to unintended and potentially
detrimental effects in generalization. [Yeda: Review: include this?]

We suggest a new anchor-seeking approach with an additional policy, named anchor-seeking policy,
which constrains the agent to find anchors within the seen area of the state space. With its anchor-
seeking policy, COCOA encourages anchors to be close to the offline dataset while also confining
the deltas within a narrow range by identifying anchors among neighboring states. This approach
reduces the input space and guides it toward space that was predominantly explored during the
training phase. In summary, by learning a policy to seek in-distribution anchors and differences
from the learned dynamics, we can encourage conservatism in the compositional input space of the
function approximator for the Q-function and policy. This approach is independent of and agnostic
to the prevalent behavioral conservatism in offline RL.

We empirically find that our method generally improves the performance of four representative
offline RL methods, including CQL (Kumar et al., 2020), IQL (Kostrikov et al., 2022), MOPO (Yu
et al., 2020b), and MOBILE (Sun et al., 2023) on the D4RL benchmark (Fu et al., 2020). We also
show that learning anchor-seeking positively impacts the performance of our method through an
ablation study. Our main contributions can be summarized as follows:

• We pursue conservatism in the compositional input space for the function approximators
of the Q-function and policy, independently and agnostically to the prevalent behavioral
conservatism in offline RL.

• We introduce COmpositional COnservatism with Anchor-seeking (COCOA) that finds in-
distribution anchors and deltas with the learned dynamics model, which is crucial for com-
positional generalization.

• We empirically show that the performance of four state-of-the-art offline RL algorithms on
the D4RL benchmark is generally improved when equipped with COCOA. Additionally,
our ablation study shows the efficacy of the anchor-seeking policy compared to a heuristic
anchor selection.

2 PRELIMINARIES

2.1 OFFLINE RL

We assume an MDP problem (S,A, T,R) with a continuous state space S, a continuous action
space A, a transition function T : S × A → S, and a reward function R : S × A → R. The goal
is to find a policy π : S → A that maximizes the expected return J(π) = Eπ [

∑∞
t=0 γ

tR (st, at)],
where γ ∈ [0, 1) is a discount factor.

In offline RL, also known as batch RL, we are given a dataset Denv = {(si, ai, si+1, ri)}Ni=1 gener-
ated with a behavior policy. The goal in offline RL is to find a policy π that maximizes the expected
return J(π) using only the fixed datasetDenv. Like most model-baed offline RL algorithms, we learn
a dynamics model T̂ (si+1|si, ai) which predicts the next state si+1 given the current state si and
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action ai. In addition to the forward dynamics model, we also learned a reverse dynamics model
T̂ (si|si+1, ai) which predicts the current state si given the next state si+1 and action ai.

2.2 BILINEAR TRANSDUCTION

In this section, we follow the formulation of Netanyahu et al. (2023) about generalization problems.
Without assumptions on the train and test distribution, the generalization performance of a function
approximator is limited. This problem occurs especially when the test distribution is not contained
in the train distribution, which is also known as an out-of-support (OOS) learning problem. As a
special case of OOS, an out-of-combination (OOC) problem occurs when the input space is decom-
posed into two components, and the marginal of the train distribution of each component includes
that of the test distribution while the joint train distribution does not necessarily contain the joint test
distribution. Under certain assumptions, Netanyahu et al. (2023) propose a transductive reparam-
eterization method called bilinear transduction to convert an OOS problem into an OOC problem
and address it.

Bilinear transduction. Bilinear transduction (Netanyahu et al., 2023) is a method for solving ex-
trapolation under certain assumptions. It first reparameterizes the target function f(x) as follows:

f(x) := f̄(x− x̃, x̃) (1)

Here, x̃ is termed as an anchor which is selected from the training dataset and the difference (x− x̃)
between the input variable x and the anchor x̃ is termed as a delta. The reparameterized target
function f̄ is approximated as a bilinear function of the embeddings φ1 and φ2:

f̄θ(x) = φ1(x− x̃) ·φ2(x̃) (2)

With this bilinear architecture, intuitively, it facilitates the low-rank property of the embeddings φ1

and φ2 which enables the function approximator to generalize to OOC points.

Sufficient conditions for bilinear transduction. Netanyahu et al. (2023) introduce sufficient con-
ditions for bilinear transduction to be applicable. Those assumptions are about both the dataset and
the target function f . The first assumption is about a combinatorial coverage of the dataset. The test
dataset has to have a bounded combinatorial density ratio with respect to the training dataset. It im-
plies that the support of the joint distribution of the training distributions of the components should
include the support of the joint distribution of the test distributions of the components. Second, the
target function f should be bilinearly transducible , i.e., there exists a deterministic function f̄ such
that f(x) = f̄(x − x̃, x̃) for all x, x̃ ∈ X . Lastly, the training distribution of anchors should not
degenerate (Shah et al., 2020). Under these three conditions, it is possible to generalize the target
function to OOC points with a theoretically guaranteed risk bound.

Connection to compositional generalization. In light of the literature on compositional general-
ization (Wiedemer et al., 2023), we interpret bilinear transduction as a special case of compositional
generalization, where the φ1,φ2 models serves as component functions, extracting low-rank fea-
tures of the input, and the inner product serves as a composition function.

3 COMPOSITIONAL CONSERVATISM WITH ANCHOR-SEEKING (COCOA)

3.1 OFFLINE RL WITH BILINEAR TRANSDUCTION

The base algorithms for common methods in offline RL, such as Deep Q-Networks (DQN) (Mnih
et al., 2015) and Actor-Critic methods (Mnih et al., 2016; Haarnoja et al., 2018), frequently use
deep neural networks as function approximators. Therefore, we employ bilinear transduction (Sec-
tion 2.2) to the function approximators of policy and Q-function. In both train and test phases, we
decompose the current state s into an anchor s̃ and a delta ∆s = s − s̃, where s̃ ∼ Denv. Then, the
policy and the Q-function will be described as follows:

π̄θ(s) = φθ,1(∆s) ·φθ,2(s̃)

Q̄ϕ(s, a) = φϕ,1(∆s, a) ·φϕ,2(s̃, a)
(3)
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Figure 1: (a) An illustration of anchor-seeking rollouts that find anchors close to the seen area of
the state space S. Given the current state s, the anchor-seeking policy π̃ gives actions to reach the
anchor s̃. Its behavior is derived by utilizing reverse model rollouts, which diverge from the offline
dataset. (b) An illustration of the current state s and an anchor s̃. Ideally, this anchor s̃ has been
observed during the training phase when it served as an anchor for another state. Similarly, the
difference, delta, had also been encountered previously in the ideal case, but in combination with a
different anchor. (c) The architecture of our policy π(a|s) that aims to generalize to an unfamiliar
state, by decomposing the state s into familiar components (seen anchor s̃ and seen delta ∆s) and
applying a transductive predictor. The architecture of the Q-function is similar to that of the policy.

The architecture of the policy and Q-function is illustrated in Figure 1c. The policy π(a|s) is trained
to maximize the expected return J(π), and the Q-function Q(s, a) is trained to minimize its loss
function LQ defined in the base offline RL algorithm.

Different state decompositions can result in different compositional input spaces, resulting in differ-
ent generalization capabilities. In order to satisfy the assumptions of bilinear transduction 2.2, the
ideal approach is to find the decomposition that fulfills these two criteria: in-distribution anchor and
in-distribution delta. This ideal case is illustrated in Figure 1c. However, in contrast to the prior
works (Netanyahu et al., 2023; Pinneri et al., 2023) that only focus on the transducible property
of the goal state, we try to handle each state in every step, and it is computationally infeasible to
enforce these constraints using brute-force methods like comparing the current states to all other
points. Hence, we introduce a new anchor-seeking policy that learns to find in-distribution anchors
and deltas and prevent arbitrary decomposition using the learned dynamics model, to exploit the
power of bilinear transduction. We also enforce each delta to be within a distance of a few steps of
the dynamics model to confine the distribution of delta in both the train and test phase to a similar
range. This approach reduces the input space and guides it toward space that was predominantly
explored during the training phase, thereby further enhancing generalizability.

3.2 LEARNING TO SEEK IN-DISTRIBUTION DECOMPOSITION

In this section, we list and describe the additional model, policy, and augmented dataset required
before training the anchor-seeking policy. These include the reverse dynamics model, the anchor-
seeking trajectory, and the random divergent reverse policy, with detailed explanations provided on
how they are utilized.

3.2.1 ANCHOR-SEEKING TRAJECTORY

Training a reverse dynamics model. Given a transition (s, a, s′) sampled from the dataset Denv,
we train a reverse transition dynamics model T̂r(s|s′, a) (Wang et al., 2021; Lai et al., 2020; Goyal
et al., 2018; Edwards et al., 2018; Holyoak & Simon, 1999) to predict the state s given the next state
s′ and action a. q This is done by minimizing the loss with the dataset’s state s. The loss function is
defined as:

Lr = E(s,a,s′)∼Denv

[∥∥∥T̂r(s
′, a)− s

∥∥∥2
2

]
(4)
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In other words, the reverse dynamics model T (s′, a) predicts “From which state s did we come if
we arrived at s′ by taking action a?”.

Random divergent reverse policy. We do not use a trained reverse policy, but instead, we use
a heuristic reverse policy that randomly selects an action from the dataset Denv. The subsequent
actions in reverse rollouts, after the initial action, follow the same direction as the initial action but
are slightly scaled down and have a small Gaussian noise added. This ensures that the reverse rollout
diverges away from the dataset. Since we use random actions and maintain a consistent direction
throughout the reverse rollout, it is more likely to venture into unexplored regions beyond the offline
dataset.

In sum, the reverse policy gives the action aj at each rollout step j as follows:

aj = ϕa+ ϵj , j = 1, 2, . . . , h

a ∼ Denv, ϵj ∼ N (0, σ2)
(5)

where h is the horizon length, ϕ is the scale coefficient, and σ is the noise coefficient. We use 0.8
for ϕ and 0.1 for σ when the maximum action value is 1.0.

Anchor-seeking trajectory. We use rollouts of the reverse model to make anchor-seeking trajecto-
ries, for training the anchor-seeking policy. First, we sample the anchor state from the dataset and
generate a reverse transitionDreverse = {(si+1, ai, si, ri)}ji=1 from the anchor state using the reverse
dynamics model and the random divergent reverse policy. Note that, the direction of anchor-seeking
trajectory is reverse to that of reverse transition, Dreverse.

Utilizing reverse model rollouts to address the OOD problem was first proposed by Wang et al.
(2021). They augmented the offline dataset with reverse transition, trained a policy using this aug-
mented dataset, and demonstrated the efficacy of such an approach in the offline RL setting. By
doing so, we can effectively generate anchor-seeking trajectories for anchor-seeking training. The
detail of generating anchor-seeking trajector is described in Algorithm 1.

Algorithm 1 Generation of Anchor-Seeking Trajectory

Require: Offline dataset Denv, reverse dynamics T̂r, anchor-seeking horizon h, rollout epoch e
1: for k in 1 . . . e do
2: Sample anchor state st ∼ Denv

3: Generate reverse model rollout τ̂ = {(st−i, at−i, rt−i, st+1−i)}hi=1 from st by using the
reverse dynamics T̂r and random divergent actions {at−i}hi=1

4: Add model rollouts to replay buffer, Dreverse ← Dreverse ∪ {(st−i, at−i, rt−i, st+1−i)}hi=1
5: end for
6: return Dreverse

3.2.2 DYNAMICS-AWARE ANCHOR-SEEKING

Training the Anchor-Seeking Policy. We train the anchor-seeking policy π̃(a|s) before training the
main policy. During the training phase, we utilized anchor-seeking trajectory which is the reverse
direction to the dataset Dreverse.

By following the path of the anchor-seeking trajectory, the anchor-seeking policy is trained to select
actions η that guide the agent in a direction moving from the external boundary towards the seen
area illustrated in Figure 1a. Given, the anchor-seeking rollout is generated by the anchor-seeking
policy π̃(a|s) and the dynamics model T̂ (s, a), the reverse transition Dreverse relies on:

T̂r(s, r|s′, a)

Given that the reverse transition was designed to diverge from the offline dataset, the anchor-seeking
trajectory, with its reversed direction, ensures the transition converges back to the dataset from
unfamiliar states. Thus, we train the anchor-seeking policy to minimize the MSE loss between the
predicted action and the action in the dataset Dreverse.
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The loss function is defined as:

Lanchor(θ) = E(s′,a,s)∼Dreverse
η∼π̃θ(a|s)

[
(η − a)2

]
(6)

In this way, The anchor-seeking policy π̃(a|s) can provide proper action inducing current state to
find the proper anchor which is in-distributed data, and that action is utilized by dynamics model
T̂ (s, a) for the next state. Thereby, the anchor-seeking rollout (Figure 1) is a sequence of transitions
that starts from the current state s and ends at the anchor state s̃.

Algorithm 2 Anchor-Seeking Rollout

Require: Current state s, anchor-seeking policy π̃, forward dynamics model T̂ , anchor-seeking
horizon h

1: Set the initial state for anchor-seeking: s̃ = s
2: for i = 1 to h do
3: Compute the anchor-seeking action η ← π̃(s̃)

4: Update anchor s̃← T̂ (s̃, η)
5: end for
6: return s̃

3.3 METHOD SUMMARY

In this section, we illustrate the integration of the anchor-seeking model into the bilinear transduc-
tion framework. We choose the Soft Actor-Critic (SAC) algorithm as a representative RL algorithm
that employs function approximators. In our formulation, we utilize the bilinear transduction, sup-
plemented with anchor-seeking, into both the actor and critic networks of SAC.

Given an input state sn, we use rollout to obtain the action from the anchor-seeking policy. The
anchor s̃ is derived by this action through the forward step of dynamics. This anchor is then updated
to be the next state sn+1, and the process iterates to determine the following anchor. After rolling
out a few times in a row, we can pinpoint the final anchor and use this anchor to decompose the
state into the anchor and delta. The difference between the initial state sn and this anchor s̃, delta,
is computed as ∆s = s̃− sn.

We then carry out the bilinear transduction as described in Equation 2. Here, we embed ∆s and s̃
as φ1(∆s) and φ2(s̃), respectively, and compute the inner product of these two embeddings. The
output is then fed into a small MLP layer to enhance the flexibility of the function approximator.
This step is necessary to introduce nonlinearity, as the policy or Q-function may not be linear to their
inputs.

For a detailed description of this process, please refer to Algorithm 3 which outlines the actor mod-
ule. For the critic module’s forward operation, we concatenate the action to both the anchor and
delta before executing bilinear transduction. Subsequently, the derived values f̄ = â and f̄ = Q̂ are
employed to update the actor and critic networks of the SAC policy.

Algorithm 3 Bilinear Transduction with Anchor-Seeking (Actor)

Require: Input state s, anchor-seeking policy π̃, forward dynamics model T̂ , anchor-seeking hori-
zon h, embedding layers {φ1,φ2}

1: Set s0 ← s
2: Perform anchor-seeking rollout τ̂ = {(si, ai, si+1)}h−1

i=0 by using the anchor-seeking policy
π̃(ai|si) and forward dynamics T̂ (si+1|si, ai)

3: Decompose the state s by using the final state as an anchor: s̃← sh, ∆s← s− sh
4: Bilinear transduction of the target function: f̄ ← φ1(s− s̃) ·φ2(s̃)
5: Process f̄ with an additional MLP layer: f̄ ← MLP(f)
6: return f̄
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Table 1: D4RL benchmark results. We report the normalized average return of the last 10 training
epochs across 4 seeds on the D4RL benchmark tasks.

Task BC CQL IQL MOPO MOBILE
Alone +COCOA Alone +COCOA Alone +COCOA Alone +COCOA

halfcheetah-random 2.2 31.3 8.9 ± 0.6 - - 37.3 24.0 ± 13.5 42.5 39.8 ± 1.1
hopper-random 3.7 5.3 8.6 ± 1.0 - - 31.7 32.8 ± 1.4 7.6 20.3 ± 11.3
walker2d-random 1.3 5.4 2.7 ± 0.3 - - 4.1 8.4 ± 8.6 9.3 21.4 ± 0.2
halfcheetah-medium 43.2 46.9 50.6 ± 0.2 47.4 48.1 ± 0.2 72.4 73.0 ± 4.7 73.5 73.7 ± 0.9
hopper-medium 54.1 61.9 63.7 ± 1.8 66.3 62.6 ± 2.8 62.8 39.6 ± 2.4 81.9 107.0 ± 0.0
walker2d-medium 70.9 79.5 82.8 ± 0.2 78.3 76.6 ± 1.0 84.1 71.8 ± 8.9 80.0 84.7 ± 1.2
halfcheetah-medium-replay 37.6 45.3 46.6 ± 0.3 44.2 38.2 ± 1.3 72.1 72.1 ± 1.4 68.8 69.1 ± 1.1
hopper-medium-replay 16.6 86.3 94.5 ± 2.2 94.7 62.8 ± 8.7 92.8 56.6 ± 14.5 100.2 107.0 ± 0.7
walker2d-medium-replay 20.3 76.8 85.7 ± 0.8 73.9 45.2 ± 5.8 85.2 92.3 ± 1.9 91.3 86.7 ± 0.4

halfcheetah-medium-expert 44.0 95.0 80.2 ± 3.1 86.7 92.4 ± 1.0 83.6 85.6 ± 9.6 91.4 110.5 ± 1.5
hopper-medium-expert 53.9 96.9 104.2 ± 4.7 91.5 104.0 ± 2.5 74.9 86.2 ± 29.8 112.5 111.8 ± 0.8
walker2d-medium-expert 90.1 109.1 109.5 ± 0.5 109.6 109.0 ± 0.0 105.3 110.5 ± 1.1 112.2 112.0 ± 1.2
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Figure 2: Performance of CQL, IQL, MOPO, MOBILE with and without COCOA on D4RL
halfcheetah-medium-expert-v2 task.

4 EXPERIMENTS

We aim to empirically answer the following two questions: a) how much does our method improve
the performance of prior model-free and model-based algorithms?, and b) what is the effect of the
anchor-seeking on performance?

4.1 D4RL BENCHMARK TASKS

We evaluate our method on the Gym-MuJoCo tasks in D4RL benchmark (Fu et al., 2020), which
consists of 12 tasks from the OpenAI Gym (Brockman et al., 2016) and MuJoCo (Todorov et al.,
2012) environments. Refer to A.1 for the details of the tasks.

Baselines. We apply COCOA to several prior offline RL algorithms, both model-based and model-
free approaches. These include CQL (Kumar et al., 2020), which penalizes Q-values on out-of-
distribution samples for safety; IQL (Kostrikov et al., 2022), which leverages the generalization
capabilities of the function approximator by viewing the state value function as a random variable;
MOPO (Yu et al., 2020b), a model-based approach that penalizes rewards based on uncertainty from
predicting subsequent states; and MOBILE (Sun et al., 2023), which quantify uncertainty through
the inconsistency of Bellman estimations using an ensemble of dynamics models. We also include
the results of Behavior Cloning (BC), which learns tasks by imitating expert data.

Results. The results of our experiments are summarized in Table 1. The baseline algorithms are
denoted as “Alone”, and our method is denoted as “+COCOA”. We report the average return of the
last 10 training epochs across 4 seeds, with the standard deviation. FFor IQL, we refer to the results
from the original papers. For MOBILE, we reproduce the results with the codebase described in
Appendix A.3 For CQL and MOPO, which originally use the MuJoCo-v0 dataset, we reference
the results reproduced with the MuJoCo-v2 dataset as reported in the MOBILE paper. Our method
improves the performance of 9 out of 12 tasks in CQL, 3 out of 9 tasks in IQL, 7 out of 12 tasks in
MOPO, and 10 out of 12 tasks in MOBILE.
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4.2 ABLATION STUDY: THE EFFECT OF ANCHOR-SEEKING

Table 2: Ablation study for anchor-seeking. We
report the normalized average return of the last
10 training epochs across 4 seeds on the D4RL
benchmark tasks.

Task CQL

Alone +COCOA
(w/o A.S.) +COCOA

halfcheetah-random 31.3 22.5 ± 0.5 8.9 ± 0.6
hopper-random 5.3 25.8 ± 7.4 8.6 ± 1.0
walker2d-random 5.4 8.7 ± 5.3 2.7 ± 0.3

halfcheetah-medium 46.9 47.6 ± 0.2 50.6 ± 0.2
hopper-medium 61.9 54.0 ± 2.4 63.7 ± 1.8
walker2d-medium 79.5 80.3 ± 0.9 82.8 ± 0.2
halfcheetah-medium-replay 45.3 45.1 ± 0.3 46.6 ± 0.3
hopper-medium-replay 86.3 84.7 ± 2.9 94.5 ± 2.2
walker2d-medium-replay 76.8 78.7 ± 2.2 85.7 ± 0.8
halfcheetah-medium-expert 95.0 15.8 ± 3.2 80.2 ± 3.1
hopper-medium-expert 96.9 30.4 ± 9.8 104.2 ± 4.7
walker2d-medium-expert 109.1 86.8 ± 2.3 109.5 ± 0.5

To examine the impact of anchor selection on
performance, we experiment with a variant of
our method that does not use anchor-seeking.
For this ablation study, we use CQL (Kumar
et al., 2020) as the base algorithm and evaluate
with D4RL benchmark tasks.

Baselines. Instead of using the anchor-seeking
policy, we follow the anchor selection proce-
dure in Netanyahu et al. (2023) with some mod-
ifications to reduce the computation cost. This
variant is denoted as “+COCOA (w/o A.S.)” in
Table 2.

We first take N number of candidate anchors
si from the dataset and compute the difference,
∆s, between the candidate anchors and the cur-
rent state.

∆sn = s−sn, n ∈ {1, . . . , N}, sn ∈ Denv
(7)

Then, we compare this delta with the difference
between two arbitrary states in the offline dataset Denv, which is computed with N sample states.

∆si,j = si − sj , i, j ∈ {1, . . . , N}, i ̸= j, si, sj ∈ Denv (8)

Then we select the candidate anchor that has the closest distance to the current state.

argmin
n

{
min
i,j
∥∆sn −∆si,j∥

}
(9)

This method enforces the results of state decomposition to be close to in-distribution data through di-
rect distance calculation. While it can be strong if the dataset is small and N is sufficiently large, it is
not scalable as the amount of computation increases with the amount of data. Since the computation
cost escalates in a cubic manner to the sample size, we set N to 30.

Results. We examine whether this variant improves the performance of CQL. The results are sum-
marized in Table 2. We report the average return of the last 10 training epochs across 4 seeds, with
the standard deviation. As shown in the table, “+COCOA (w/o A.S.)” achieves a higher performance
in only one task, “walker2d-random”, and comparable or lower performance in the other tasks com-
pared to the baseline. In contrast, our method, “+COCOA”, improves the performance in 9 out of 12
tasks. This suggests that the anchor-seeking is a crucial element of our method.

5 RELATED WORK

5.1 OFFLINE RL

In offline RL, agents use a predefined dataset without additional interactions, typically following
either the model-based or model-free strategy. Model-free RL algorithms (Kim & Oh, 2023; Ran
et al., 2023; Kostrikov et al., 2022; Kumar et al., 2020; Wu et al., 2019; Kumar et al., 2019; Fujimoto
et al., 2019) optimize policy directly using prior experiences (replay buffer) and data, applying
conservatism to the value function or policy. In contrast, model-based offline RL uses a model
trained in the environment to create an additional dataset, which is then employed for policy learning.
Through this synthesized data, the approach becomes stronger in generalization, becoming robust
even to unseen states. Previous model-based offline RL algorithms (Sun et al., 2023; Rigter et al.,
2022; Wang et al., 2021; Yu et al., 2021; 2020b; Kidambi et al., 2020) have been able to achieve
significant performance improvements than before.
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5.2 OUT-OF-DISTRIBUTION GENERALIZATION IN OFFLINE RL

Many works explicitly tried to improve the out-of-distribution (OOD) generalization of offline RL
algorithms. Lou et al. (2022) tackled the action distributional shift problem by introducing an action
embedding model, employing a mutual information-based approach to learn this model. In a similar
pursuit, Gu et al. (2022) proposed a pseudometric action representation learning method that mea-
sures both behavioral relation and data-distributional relation between actions. Pitis et al. (2022)
developed a method to improve the generalization of offline RL algorithms by local factorization
of transition dynamics and state augmentation. They also provided theoretical proofs for sample
complexity and generalization ability. Our method is similar to theirs in that we also employ the
factorized architecture of the policy and Q-function. Unlike them, however, we do not use a factor-
ized dynamics model and instead leverage the bilinear transduction framework. Bai et al. (2022) is
an uncertainty-driven method that uses the disagreement of bootstrapped Q-functions. It involves
augmenting the dataset with OOD data points to impose a more refined penalty on these points.
Similar to them, we also aim to address the state distributional shift problem by state augmentation.
However, our method is different in that we exploit the reverse model rollouts and that we use them
as a guide to select the anchor.

5.3 COMPOSITIONAL GENERALIZATION AND EXTRAPOLATION

Compositional generalization, which strives to generalize to unseen combinations of components,
is explored by various studies. Wiedemer et al. (2023) highlight a two-step generative procedure
as essential for tackling a wide range of compositional problems. This procedure involves the com-
plex generation of individual components and their straightforward combination into a single output.
They provided a set of sufficient conditions under which models trained on the data can generalize
compositionally. On a related note, Shah et al. (2020) presented a sample-efficient RL algorithm that
exploits the low-rank structure of the optimal Q-function, which is a bilinear function of state and
action. They proved a quantitative sample complexity improvement for RL with continuous state
and action spaces via low-rank structure. Dong & Ma (2023) explored the extrapolation of nonlin-
ear models for structured domain shift. They proved that a specific family of nonlinear models can
successfully extrapolate to unseen distributions, provided the feature covariance is well-conditioned.
(Netanyahu et al., 2023) proposed an extrapolation strategy based on bilinear embeddings to enable
combinatorial generalization, thereby addressing the out-of-support problem under certain condi-
tions.

6 CONCLUSION

In conclusion, we explored a new perspective of conservatism for offline RL, that does not regard
the behavior space of the agent but the compositional input space of the policy and Q-function. We
propose a practical framework, COCOA, for finding the better decomposition of states to encourage
such conservatism. COCOA is a simple yet effective approach that can be applied to any offline
RL algorithm that utilizes a function approximator. We empirically find that our method generally
enhanced the performance of offline RL algorithms through our experiments across various tasks in
Gym-MuJoCo environment of the D4RL benchmark.

As our study primarily engages in empirical exploration, the mechanism behind the performance
improvement or the properties of the compositional input space may demand further investigation
for a more comprehensive understanding. Moreover, the experiments were limited to control-based
robotics environments with continuous state and action spaces. A valuable extension of this work
would involve applying the compositional conservatism framework to other domains, including
those with discrete action spaces, image-based environments, or environments with highly complex
dynamics.

7 REPRODUCIBILITY STATEMENT

For reproducibility, we provide the demo code of our method in the supplementary material. About
the codebase for the baseline algorithms, please refer to the Appendix A.3. The hyperparameters
and the model architecture are described in Appendix A.4 and Appendix A.2, respectively.
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A EXPERIMENT SETTINGS AND IMPLEMENTATION DETAILS

A.1 D4RL BENCHMARK TASKS

HalfCheetah: The half-cheetah is a two-dimensional bipedal robot composed of 8 solid links,
encompassing two legs and a torso, coupled with 6 motorized joints. The state space is 17-
dimensional, encompassing both joint angles and velocities. An adversary destabilizes it by exerting
a 6-dimensional action with 2-dimensional forces on the torso and each foot.

Hopper: The hopper is a planar monopod robot, assembled with 4 solid links that represent the
torso, upper leg, lower leg, and foot, and includes 3 motorized joints. It has an 11-dimensional state
space including joint angles and velocities. An adversary employs a 2-dimensional force on the foot
to disrupt its stability.

Walker2D: The walker operates as a two-dimensional bipedal robot with a structure of 7 links,
representing two legs and a torso, along with 6 actuated joints. Within its 17-dimensional state
space, joint angles and velocities are included. An adversary employs a 4-dimensional action with
2-dimensional forces on both feet to disrupt its equilibrium.

A.2 MODEL ARCHITECTURE

Dynamics Model Architecture: As with previous works, we used a neural network as the back-
bone for our dynamics model, which outputs a Gaussian distribution for the next state and reward.
By ensembling these networks, we achieved greater stability and enhanced performance. From an
ensemble of seven, we selected the top five models based on validation error. The backbone of the
dynamics model comprises four layers, each with a hidden dimension of 200.

Actor & Critic Architecture: The actor-critic framework like SAC (Haarnoja et al., 2018) com-
prise actor and critic modules. Typically, an actor possesses a backbone constructed from a neural
network. Features embedded within this backbone are relayed through a last layer that outputs a
Gaussian distribution, yielding a non-deterministic result. Although MOPO, MOBILE, CQL, and
IQL (Yu et al., 2020b; Sun et al., 2023; Kostrikov et al., 2022; Kumar et al., 2020), traditionally use
2, 2, 3, and 2 backbone layers with a dimension of 256 respectively, upon integrating COCOA, we
standardized the use of two backbone layers with 100 hidden dimensions.

Anchor-seeking Policy Architecture: The anchor-seeking policy acts as an add-on module, shared
between the actor and critic. The input data, consisting of delta and anchor, is embedded through a
neural network and subsequently processed by a bilinear architecture. Initially, inputs are embedded
to the dimension of 64 with two neural networks, and the bilinear architecture produces an output
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with the dimension of 4 using those embedded features. Then, these embedded features from bilin-
ear architecture are channeled through the actor and critic backbone architectures, resulting in the
determination of the action and Q value, respectively.

Parameter Size: The anchor-seeking policy is built upon a compact neural network. For model-
based algorithms like MOPO and MOBILE, the dynamics parameter size is approximately 1.9M,
similar to that of COCOA. However, the parameter size needed for training the actor and critic for
MOPO and MOBILE is identical to 0.21M. However, when COCOA is added to these Algorithms,
the size of the parameter decreases to 0.19M. Given the significant magnitude of the dynamics pa-
rameters, the cumulative parameter requirement for training across COCOA-added model-based al-
gorithms consistently stands at 2.2M. In contrast, IQL+COCOA and CQL+COCOA, which operate
without a dynamics model, each have a parameter size of 2.0M.

A.3 CODE IMPLEMENTATION

Our method is designed as an add-on enhancement to existing offline RL algorithms. Consequently,
rather than developing a new implementation, we adapted the established codebases of base algo-
rithms. For consistent and reliable code adaptation, we relied on Sun (2023) as the foundation for
all base algorithms, including CQL (Kumar et al., 2020), IQL (Kostrikov et al., 2022), MOPO (Yu
et al., 2020b) and MOBILE (Sun et al., 2023). The reliability of this codebase is supported by de-
tailed training logs and results that align with those in the original papers. Additionally, Sun (2023)
offers results for the Gym-MuJoCo-v2 datasets not present in the original CQL and MOPO papers,
satisfying our needs. An interesting point is that this codebase is furnished by an author of MOBILE
(Sun et al., 2023). Our adaptations to the code are shared as a demo in the supplementary material.

A.4 HYPERPARAMETERS FOR EACH ALGORITHM

CQL. For both CQL and CQL+COCOA, we use α = 5.0 for all D4RL-Gym tasks because the
reproduced codebase (Sun, 2023) which provides the results for MuJoCo-v2 tasks, which are not
included in the original paper (Kumar et al., 2020), uses this value. For COCOA, the anchor seeking
horizon length h was set to 1 for most tasks, except for “halfcheetah-medium-expert-v2”, “hopper-
medium-expert-v2”, and “walker2d-medium-expert-v2”, where h was set to 3.

IQL. For both IQL and IQL+COCOA, we use the same hyperparameters as described in the original
paper (Kostrikov et al., 2022), τ = 0.7 and β = 0.3, which is also used in the reproduced codebase
(Sun, 2023). For COCOA, the anchor seeking horizon length h was set to 1 for all tasks.

MOPO. For MOPO, we use the hyperparameters used in the reproduced codebase (Sun, 2023)
which provides the results for MuJoCo-v2 tasks, which are not included in the original paper (Yu
et al., 2020b). Note that we use aleatoric uncertainty for both MOPO and MOPO+COCOA, as in the
original paper. For MOPO+COCOA, we search for the best penalty coefficient λ and rollout length
hr for each task in the following ranges: λ ∈ {0.1, 0.5, 1.0, 2.5, 5.0, 10.0}, hr ∈ {1, 5, 7, 10, 15}.
The best hyperparameters are described in Table 3. For COCOA, the anchor seeking horizon length
h was set to 1 for all tasks.

MOBILE. For MOBILE, we use the same hyperparameters as described in the original paper (Sun
et al., 2023). For MOBILE+COCOA, we search for the best penalty coefficient λ and rollout length
hr for each task in the following ranges: λ ∈ {0.1, 0.5, 1.0, 2.0}, hr ∈ {1, 3, 5, 7, 10, 15}. The best
hyperparameters are described in Table 3. For COCOA, the anchor seeking horizon length h was
set to 1 for all tasks.

B DETAILED RESULTS

B.1 PERFORMANCE GRAPHS OF D4RL BENCHMARK TASKS

In this section, we provide the performance graphs of each algorithm on D4RL benchmark tasks.
We include only the 9 tasks that are not “random” tasks because the checkpoints of the baseline
methods for the “random” tasks are not provided.
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Table 3: Hyperparameters for MOPO+COCOA and MOBILE+COCOA.

Task MOPO+COCOA MOBILE+COCOA

λ hr λ hr

halfcheetah-random 0.1 7 1.0 10
hopper-random 10.0 5 0.1 1
walker2d-random 0.5 5 1.0 5

halfcheetah-medium 0.5 7 1.0 5
hopper-medium 10.0 15 1.5 10
walker2d-medium 5.0 1 1.0 10

halfcheetah-medium-replay 1.0 10 1.0 10
hopper-medium-replay 1.0 10 1.0 10
walker2d-medium-replay 0.5 10 1.0 3

halfcheetah-medium-expert 2.5 5 2.5 10
hopper-medium-expert 5.0 10 2.0 10
walker2d-medium-expert 1.0 10 1.0 10
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Figure 3: Performance comparison of CQL, CQL+COCOA and CQL+COCOA without anchor-
seeking across all D4RL tasks except for “random” tasks.
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Figure 4: Performance comparison of IQL and IQL+COCOA across all D4RL tasks except for
“random” tasks.
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Figure 5: Performance comparison of MOPO and MOPO+COCOA across all D4RL tasks except
for “random” tasks.
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Figure 6: Performance comparison of MOBILE and MOBILE+COCOA across all D4RL tasks
except for “random” tasks.
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